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 KE oblika tetraedra

Čvorovi tetraedra u Dekartovom koordinatnom sistemu desne 
orijentacije obeleženi su tako da rastu suprotno od smera 
obrtanja kazaljke na časovniku gledajući sa strane čvora 4

 Položaj proizvoljne tačke u
zavisnosti od koordinata temena
može da se prikaže na sledeći način

 pri čemu zapreminske koordinate
nisu međusobno nezavisne
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3 (x3, y3, z3)
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4 (x4, y4, z4)

1 (x1, y1, z1)x

(0, 0, 0, 1)

(0, 0, 1, 0)

(0, 1, 0, 0)
(L1=1, L2=0, L3=0, L4=0)

P (x, y, z)
(L1, L2, L3, L4)

𝑥 = 𝐿1𝑥1 + 𝐿2𝑥2 + 𝐿3𝑥3 + 𝐿4𝑥4
𝑦 = 𝐿1𝑦1 + 𝐿2𝑦2 + 𝐿3𝑦3 + 𝐿4𝑦4
𝑧 = 𝐿1𝑧1 + 𝐿2𝑧2 + 𝐿3𝑧3 + 𝐿4𝑧4

𝐿1 + 𝐿2 + 𝐿3 + 𝐿4 = 1



 KE oblika tetraedra

 Prethodni izrazi u matričnom obliku glase

odakle sledi
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 KE oblika tetraedra

 Izraz u zagradi uz koeficijent 1/6 za i = 1 predstavlja zapreminu 
dela tetraedra definisanog koordinatama čvorova 2(x2, y2), 
3(x3, y3), 4(x4, y4) i tačke P(x, y, z) pa se na osnovu toga 
zaključuje da zapreminska koordinata L1 predstavlja odnos 
zapremine dela tetraedra definisanog čvorovima P, 2, 3, 4 
naspram čvora 1 i zapremine V celog tetraedra

 S obzirom na to da se vrednost
zapreminske koordinate Li linearno
menja od 1 u i-tom čvoru (temenu)
do 0 u preostalim čvorovima
(temenima) ona je jednaka IF i-tog čvora osnovnog 
tetraedarskog KE (linearna interpolacija), odnosno važi 
sledeće
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𝐿1 =
𝑉1
𝑉

𝐿2 =
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𝑉
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𝑉
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𝑉4
𝑉

V1

y

z

3

2

4

1x

P

𝑁1 = 𝐿1 𝑁2 = 𝐿2 𝑁3 = 𝐿3 𝑁4 = 𝐿4



 KE oblika tetraedra

Ako je f funkcija od L1, L2, L3 i L4 operacija parcijalnog 
diferenciranja po koordinatama x, y i z obavlja se na sledeći 
način

 Integracija po zapremini KE kada se pod integralom javljaju 
prirodne koordinate obavlja se pomoću izraza

 gde su i, j, k i l celobrojni eksponenti

Prirodne koordinate i interpolacione 
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 KE oblika tetraedra

 IF mogu da se odrede pomoću formule

 pri čemu je n stepen polinoma

 Analogni izrazi važe za Nβ(L2), Nγ(L3) i Nδ(L4)

 Čvorovima KE pridružuju se četiri broja čiji je zbir jednak stepenu 
interpolacionog polinoma
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i težištima površina strana), 60 

stepeni slobode)



 KE oblika tetraedra

 IF mogu da se odrede pomoću formule
 Svaki broj se odnosi na jednu od stranica tetraedra. Prvi broj je jednak 0 u čvorovima koji leže na 

površini strane gde je L1 = 0 (naspram čvora 1), drugi broj je jednak 0 u čvorovima koji leže na 
površini strane gde je L2 = 0 (naspram čvora 2), treći broj je jednak 0 u čvorovima koji leže na 
površini strane gde je L3 = 0 (naspram čvora 3) i četvrti broj je jednak 0 u čvorovima koji leže na 
površini strane gde je L4 = 0 (naspram čvora 4). Svaki od brojeva koji leži na paralelnim ravnima 
(koje su na jednakim međusobnim rastojanjima) u odnosu na odgovarajuću stranu tetraedra 
rastu sa udaljavanjem od ravni na kojoj je odgovarajuća zapreminska koordinata jednaka nuli
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 KE oblika tetraedra

 Linearne IF

 čvor 1000

 Analognim postupkom određuju se ostale IF

Prirodne koordinate i interpolacione 

funkcije. Trodimenzionalni KE

28.8.2025. OMKE 10

𝑁𝛼 𝐿1 = 𝑁𝛼=1 𝐿1 =
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 KE oblika tetraedra

 Kvadratne IF

 čvor 2000

 čvor 1100

 Analognim postupkom određuju se ostale IF
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 KE oblika tetraedra

Analogno kao i kod dvodimenzionalnih elemenata pored 
prethodno opisanih prirodnih zapreminskih koordinata može 
da se koristi sistem prirodnih koordinata ξ, η i ζ

 Proizvoljni osnovni tetraedarski
KE iz Dekartovog koordinatnog
sistema preslikava se na jedinični
tetraedar u prirodnom
koordinatnom sistemu, tj. važe
sledeće veze za linearnu
transformaciju
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y

z
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3 (x3, y3, z3)

2 (x2, y2, z2)
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η 

ζ 

ξ 
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3 (0, 0, 1)

𝑥 = 𝑥4 + 𝑥1 − 𝑥4 𝜉 + 𝑥2 − 𝑥4 𝜂 + 𝑥3 − 𝑥4 𝜁

𝑦 = 𝑦4 + 𝑦1 − 𝑦4 𝜉 + 𝑦2 − 𝑦4 𝜂 + 𝑦3 − 𝑦4 𝜁

𝑧 = 𝑧4 + 𝑧1 − 𝑧4 𝜉 + 𝑧2 − 𝑧4 𝜂 + 𝑧3 − 𝑧4 𝜁



 KE oblika tetraedra

Ako je f funkcija od x, y i z koje su u funkciji od ξ, η i ζ, tj. 
f = f(x(ξ, η, ζ), y(ξ, η, ζ), z(ξ, η, ζ)) operacija parcijalnog 
diferenciranja obavlja se na sledeći način

Prirodne koordinate i interpolacione 
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 KE oblika heksaedra

Uvodi se sistem prirodnih koordinata ξ, η i ζ koji je analogan 
sistemu prirodnih koordinata za element u obliku četvorougla

Dekartove koordinate x, y i z proizvoljne tačke u polju KE 
mogu da se prikažu kao linearna kombinacija koordinata 
čvorova x1, y1, ..., x8 i y8

Prirodne koordinate i interpolacione 
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8 (x8, y8, z8)

η 

ζ 

ξ 

1

(1, -1, -1)
2

3

4

5

6 7

8

(1, 1, -1)

(-1, 1, -1)
(-1, -1, -1)

(1, -1, 1)

(-1, -1, 1) (-1, 1, 1)

(1, 1, 1)

𝑥 =෍

𝑖=1

8

𝐿𝑖𝑥𝑖 𝑦 =෍

𝑖=1

8

𝐿𝑖𝑦𝑖 𝑧 =෍

𝑖=1

8

𝐿𝑖𝑧𝑖



 KE oblika heksaedra

 Za određivanje funkcija Li koristi se veza između globalnih 
Dekartovih i prirodnih (lokalnih bezdimenzionalnih) koordinata

 Za temena heksaedra važi

 Koristeći prethodne za svaki čvor KE sledi

Prirodne koordinate i interpolacione 

funkcije. Trodimenzionalni KE
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𝑥 = 𝛼1 + 𝛼2𝜉 + 𝛼3𝜂 + 𝛼4𝜁 + 𝛼5𝜉𝜂 + 𝛼6𝜉𝜁 + 𝛼7𝜂𝜁 + 𝛼8𝜉𝜂𝜁

𝑥 = 𝐀𝛂 𝐀 = 1 𝜉 𝜂 𝜁 𝜉𝜂 𝜉𝜁 𝜂𝜁 𝜉𝜂𝜁

𝛂𝑇 = 𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 𝛼6 𝛼7 𝛼8

𝑥 = 𝑥𝑖 , 𝜉 = 𝜉𝑖 , 𝜂 = 𝜂𝑖 , 𝑖 = 1,2,3, . . . , 8
𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6
𝑥7
𝑥8

=

1 −1 −1 −1 1 1 1 −1
1 1 −1 −1 −1 −1 1 1
1 1 1 −1 1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 −1 −1 1 1 −1 −1 1
1 1 −1 1 −1 1 −1 −1
1 1 1 1 1 1 1 1
1 −1 1 1 −1 −1 1 −1

𝛼1
𝛼2
𝛼3
𝛼4
𝛼5
𝛼6
𝛼7
𝛼8

𝐗 = 𝐄𝛂 𝛂 = 𝐄−1𝐗 𝑥 = 𝐀𝐄−1𝐗 𝐋 = 𝐀𝐄−1

𝐄−1 =
1

8

1 1 1 1 1 1 1 1
−1 1 1 −1 −1 1 1 −1
−1 −1 1 1 −1 −1 1 1
−1 −1 −1 −1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 −1 −1 1 −1 1 1 −1
1 1 −1 −1 −1 −1 1 1
−1 1 −1 1 1 −1 1 −1

𝐿𝑖 =
1

8
1 + 𝜉𝑖𝜉 1 + 𝜂𝑖𝜂 1 + 𝜁𝑖𝜁 , 𝑖 = 1,2,3, . . . , 8



Analizira se KE oblika tetraedra sa čvorovima u temenima koji 
su obeleženi tako da njihovi brojevi 1, 2 i 3 rastu u smeru 
suprotnom od smera obrtanja kazaljke na časovniku 
posmatrajući sa strane čvora 4

 Raspodela pomeranja u polju
KE definisana je potpunim
polinomima prvog stepena 

KE oblika tetraedra. Linearna 

interpolacija. CSTh KE
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x, u

3 (x3, y3, z3)

2 (x2, y2, z2)

4 (x4, y4, z4)

1 (x1, y1, z1)

y, v

z, w

v2

w2 R2z

R2y

6

5

4 R2x

u2

v1

w1 R1z

R1y

3

2

1 R1x

u1

v3

w3 R3z

R3y

9

8

7 R3x

u3

v4

w4 R4z

R4y

12

11

10 R4x

u4

1

2

3

4
𝐝𝑇 = 𝐝1 𝐝2 𝐝3 𝐝4

𝐝𝑖
𝑇 = 𝑢𝑖 𝑣𝑖 𝑤𝑖 , 𝑖 = 1,2,3,4

𝑢 = 𝛼1 + 𝛼2𝑥 + 𝛼3𝑦 + 𝛼4𝑧
𝑣 = 𝛼5 + 𝛼6𝑥 + 𝛼7𝑦 + 𝛼8𝑧

𝑤 = 𝛼9 + 𝛼10𝑥 + 𝛼11𝑦 + 𝛼12𝑧

Konstanta, 0. stepen, 1 član

Linearni, 1. stepen, 4 člana

Kvadratni, 2. stepen, 10 članova 

Kubni, 3. stepen, 20 članova

4. stepen, 35 članova

1

x

x2

z

z2

xy yz

y

y2

xz

x3 z3

x2y

y3

xyz

xy2 y2z
yz2

x2z xz2

x4

x3y

y4

xy2z

y3z
x2y2

xy3
y2z2

yz3

z4x2z2x3z xz3

x2yz xyz2



 IF. Direktan postupak

 Za čvorove KE (granični uslovi su: u = ui, v = vi, w = wi i koordinate 
čvorova su: x = xi, y = yi, z = zi, gde je i = 1, 2,3, i 4) sledi

KE oblika tetraedra. Linearna 

interpolacija. CSTh KE
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𝐮 = 𝐀𝛂 →
𝑢
𝑣
𝑤

=

1 𝑥 𝑦 𝑧 0 0 0 0 0 0 0 0
0 0 0 0 1 𝑥 𝑦 𝑧 0 0 0 0
0 0 0 0 0 0 0 0 1 𝑥 𝑦 𝑧

𝛼1
𝛼2
𝛼3
⋮
𝛼12

𝐀 =

1 𝑥 𝑦 𝑧 0 0 0 0 0 0 0 0
0 0 0 0 1 𝑥 𝑦 𝑧 0 0 0 0
0 0 0 0 0 0 0 0 1 𝑥 𝑦 𝑧

𝛂𝑇 = 𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 𝛼6 𝛼7 𝛼8 𝛼9 𝛼10 𝛼11 𝛼12

 
 
 
 
 
 
 
 
 

   
 
 
 
 
 
 
 
 
 

1 1 1 1

1 1 1 1

1 1 1 1

2 2 2 2

2 2 2 2

2 2 2 2

3 3 3 3

3 3 3 3

3 3

4

4

4

1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1

u x y z

v x y z

w x y z

u x y z

v x y z

w x y z

u x y z

v x y z

w x y

u

v

w

d Cα

























  
  
  
  
  
  
  
  
  

  
  
  
  
  
  
  
  
  

  

1

2

3

4

5

6

7

8

3 3 9

4 4 4 10

4 4 4 11

4 4 4 12

1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1

z

x y z

x y z

x y z

itd.



 IF. Zapreminske koordinate

KE oblika tetraedra. Linearna 

interpolacija. CSTh KE
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 
 

 
 
  

1 2 3 4

-1
1 2 3 4

1 2 3 4

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

N N N N

N N N N

N N N N

N AC

     
1

, 1,2,3,4
6

i i i i iN a b x c y d z i
V      

1 1 1

2 2 2

1 2 3 4

3 3 3

4 4 4

1

11 1

16 6

1

x y z

x y z
V a a a a

x y z

x y z

     

2 2 2 2 2 2 2 2 2

1 3 3 3 1 3 3 1 3 3 1 3 3

4 4 4 4 4 4 4 4 4

1 1 1

, 1 , 1 , 1

1 1 1

x y z y z x z x y

a x y z b y z c x z d x y

x y z y z x z x y

     

1 1 1 1 1 1 1 1 1

2 3 3 3 2 3 3 2 3 3 2 3 3

4 4 4 4 4 4 4 4 4

1 1 1

, 1 , 1 , 1

1 1 1

x y z y z x z x y

a x y z b y z c x z d x y

x y z y z x z x y

     

1 1 1 1 1 1 1 1 1

3 2 2 2 3 2 2 3 2 2 3 2 2

4 4 4 4 4 4 4 4 4

1 1 1

, 1 , 1 , 1

1 1 1

x y z y z x z x y

a x y z b y z c x z d x y

x y z y z x z x y

     

1 1 1 1 1 1 1 1 1

4 2 2 2 4 2 2 4 2 2 4 2 2

3 3 3 3 3 3 3 3 3

1 1 1

, 1 , 1 , 1

1 1 1

x y z y z x z x y

a x y z b y z c x z d x y

x y z y z x z x y



Matrica B

Matrica krutosti

KE oblika tetraedra. Linearna 

interpolacija. CSTh KE
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 
 
 
 

  
 
 
 
  

1 2 3 4

1 2 3 4

1 2 3 4

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 01

0 0 0 06

0 0 0 0

0 0 0 0

b b b b

c c c c

d d d d

c b c b c b c bV

d c d c d c d c

d b d b d b d b

B

 
T T

V

dV Vk B DB B DB

 
 
 
 

  
 
 
 
  

11 12 13

21 22 23

31 32 33

44

55

66

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

D D D

D D D

D D D

D

D

D

D

Komentari:

• Linearna raspodela komponenata pomeranja po spoljašnjim površinama tetraedra može jednoznačno da se 

odredi sa tri stepena slobode pomeranja u čvorovima pa se zaključuje da je kompatibilnost pomeranja na 

površinama između susednih KE zadovoljena, tj. element spada u konformne KE

• Takođe, KE ispunjava i ostale uslove za monotonu konvergenciju rešenja (interpolacione funkcije mogu da 

opišu pomeranje kao krutog tela i polje konstantnih deformacija)

• S obzirom na to da su elementi matrice B konstantni sledi da su komponente deformacije u KE konstantne pa 

se element naziva tetraedar sa konstantnim deformacijama ili CSTh element (Constant Strain Tetrahedral 

element)

𝐁 = 𝐃𝑘𝐍



Matrica krutosti

KE oblika tetraedra. Linearna 

interpolacija. CSTh KE
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   
   
   

   

   

   

   



 



2 2 2
1 11 1 44 1 66 1 1 12 44 1 1 13 66

2 2 2
1 1 21 44 1 22 1 44 1 55 1 1 23 55

2 2 2
1 1 31 66 1 1 32 55 1 33 1 55 1 66

1 2 11 1 2 44 1 2 66 2 1 12 1 2 44 2 1 13 1 2 66

1 2 21 2 1

1

36

b D c D d D b c D D b d D D

b c D D c D b D d D c d D D

b d D D c d D D d D c D b D

b b D c c D d d D b c D b c D b d D b d D

b c D b c D

V
k

  

   

   

   

44 1 2 22 1 2 44 1 2 55 2 1 23 1 2 55

1 2 31 2 1 66 1 2 32 2 1 55 1 2 33 1 2 55 1 2 66

1 3 11 1 3 44 1 3 66 3 1 12 1 3 44 3 1 13 1 3 66

1 3 21 3 1 44 1 3 22 1 3 44 1 3 55 3 1 23 1 3 55

c c D b b D d d D c d D c d D

b d D b d D c d D c d D d d D c c D b b D

b b D c c D d d D b c D b c D b d D b d D

b c D b c D c c D b b D d d D c d D c d D

b    

   

   

  

1 3 31 3 1 66 1 3 32 3 1 55 1 3 33 1 3 55 1 3 66

1 4 11 1 4 44 1 4 66 4 1 12 1 4 44 4 1 13 1 4 66

1 4 21 4 1 44 1 4 22 1 4 44 1 4 55 4 1 23 1 4 55

1 4 31 4 1 66 1 4 32 4 1 55 1 4 33 1 4

d D b d D c d D c d D d d D c c D b b D

b b D c c D d d D b c D b c D b d D b d D

b c D b c D c c D b b D d d D c d D c d D

b d D b d D c d D c d D d d D c c





















55 1 4 66D b b D

 

   

   

   

   

1 2 11 1 2 44 1 2 66 1 2 12 2 1 44 1 2 13 2 1 66

2 1 21 1 2 44 1 2 22 1 2 44 1 2 55 1 2 23 2 1 55

2 1 31 1 2 66 2 1 32 1 2 55 1 2 33 1 2 55 1 2 66

2 2 2
2 11 2 44 2 66 2 2 12 44 2 2 13 6

b b D c c D d d D b c D b c D b d D b d D

b c D b c D c c D b b D d d D c d D c d D

b d D b d D c d D c d D d d D c c D b b D

b D c D d D b c D D b d D D 
   
   

   

   

   

   



6

2 2 2
2 2 21 44 2 22 2 44 2 55 2 2 23 55

2 2 2
2 2 31 66 2 2 32 55 2 33 2 55 2 66

2 3 11 2 3 44 2 3 66 3 2 12 2 3 44 3 2 13 2 3 66

2 3 21 3 2 44 2 3 22 2 3 44 2 3 55 3 2 23 2 3 55

2 3 31

b c D D c D b D d D c d D D

b d D D c d D D d D c D b D

b b D c c D d d D b c D b c D b d D b d D

b c D b c D c c D b b D d d D c d D c d D

b d D b   

   

   

   

3 2 66 2 3 32 3 2 55 2 3 33 2 3 55 2 3 66

2 4 11 2 4 44 2 4 66 4 2 12 2 4 44 4 2 13 2 4 66

2 4 21 4 2 44 2 4 22 2 4 44 2 4 55 4 2 23 2 4 55

2 4 31 4 2 66 2 4 32 4 2 55 2 4 33 2 4 55 2 4

d D c d D c d D d d D c c D b b D

b b D c c D d d D b c D b c D b d D b d D

b c D b c D c c D b b D d d D c d D c d D

b d D b d D c d D c d D d d D c c D b b 66D

   

   

   

  

1 3 11 1 3 44 1 3 66 1 3 12 3 1 44 1 3 13 3 1 66

3 1 21 1 3 44 1 3 22 1 3 44 1 3 55 1 3 23 3 1 55

3 1 31 1 3 66 3 1 32 1 3 55 1 3 33 1 3 55 1 3 66

2 3 11 2 3 44 2 3 66 2 3 12 3 2 44 2

b b D c c D d d D b c D b c D b d D b d D

b c D b c D c c D b b D d d D c d D c d D

b d D b d D c d D c d D d d D c c D b b D

b b D c c D d d D b c D b c D b d

   
 



   

   

   

   

3 13 3 2 66

3 2 21 2 3 44 2 3 22 2 3 44 2 3 55 2 3 23 3 2 55

3 2 31 2 3 66 3 2 32 2 3 55 2 3 33 2 3 55 2 3 66

2 2 2
3 11 3 44 3 66 3 3 12 44 3 3 13 66

2 2 2
3 3 21 44 3 22 3 44 3 55 3 3 23

D b d D

b c D b c D c c D b b D d d D c d D c d D

b d D b d D c d D c d D d d D c c D b b D

b D c D d D b c D D b d D D

b c D D c D b D d D c d D D 
      

   

   

   

55

2 2 2
3 3 31 66 3 3 32 55 3 33 3 55 3 66

3 4 11 3 4 44 3 4 66 4 3 12 3 4 44 4 3 13 3 4 66

3 4 21 4 3 44 3 4 22 3 4 44 3 4 55 4 3 23 3 4 55

3 4 31 4 3 66 3 4 32 4 3 55 3 4 33 3 4 55 3 4

b d D D c d D D d D c D b D

b b D c c D d d D b c D b c D b d D b d D

b c D b c D c c D b b D d d D c d D c d D

b d D b d D c d D c d D d d D c c D b b 66D

   

   

   

  

1 4 11 1 4 44 1 4 66 1 4 12 4 1 44 1 4 13 4 1 66

4 1 21 1 4 44 1 4 22 1 4 44 1 4 55 1 4 23 4 1 55

4 1 31 1 4 66 4 1 32 1 4 55 1 4 33 1 4 55 1 4 66

2 4 11 2 4 44 2 4 66 2 4 12 4 2 44 2

b b D c c D d d D b c D b c D b d D b d D

b c D b c D c c D b b D d d D c d D c d D

b d D b d D c d D c d D d d D c c D b b D

b b D c c D d d D b c D b c D b d 

   

   

   

 

4 13 4 2 66

4 2 21 2 4 44 2 4 22 2 4 44 2 4 55 2 4 23 4 2 55

4 2 31 2 4 66 4 2 32 2 4 55 2 4 33 2 4 55 2 4 66

3 4 11 3 4 44 3 4 66 3 4 12 4 3 44 3 4 13 4 3 66

4 3 21 3 4 44 3 4 22 3 4 4

D b d D

b c D b c D c c D b b D d d D c d D c d D

b d D b d D c d D c d D d d D c c D b b D

b b D c c D d d D b c D b c D b d D b d D

b c D b c D c c D b b D

   
   
   

 

   

   

   

   

4 3 4 55 3 4 23 4 3 55

4 3 31 3 4 66 4 3 32 3 4 55 3 4 33 3 4 55 3 4 66

2 2 2
4 11 4 44 4 66 4 4 12 44 4 4 13 66

2 2 2
4 4 21 44 4 22 4 44 4 55 4 4 23 55

2 2 2
4 4 31 66 4 4 32 55 4 33 4 55 4

d d D c d D c d D

b d D b d D c d D c d D d d D c c D b b D

b D c D d D b c D D b d D D

b c D D c D b D d D c d D D

b d D D c d D D d D c D b



















66D

kolone 1 do 3 kolone 4 do 6

kolone 7 do 9 kolone 10 do 12



Matrica raspodele napona KE

 Zaključuje se da su pored deformacije i komponente napona u KE 
konstantne. Ovo ima za posledicu potrebu za velikim brojem KE na 
mestima naglih promena deformacije i napona što je mana ovog KE

Vektor ekvivalentnog opterećenja

 Ukoliko na KE deluju konstantne zapreminske sile

KE oblika tetraedra. Linearna 

interpolacija. CSTh KE
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 KE oblika tetraedra sa čvorovima u temenima i sredinama 
ivica

 Raspodela pomeranja u polju
KE definisana je potpunim
polinomima drugog stepena

Matrica IF

KE oblika tetraedra. Kvadratna 

interpolacija. LSTh KE
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 IF. Prirodne zapreminske koordinate

Matrica B

KE oblika tetraedra. Kvadratna 

interpolacija. LSTh KE
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Matrica B

 S obzirom na to da je Ni = Ni(L1(x, y, z), L2(x, y, z), L3(x, y, z), L4(x, y, z)) 
koristeći lančano pravilo parcijalnog diferenciranja dobija se

KE oblika tetraedra. Kvadratna 

interpolacija. LSTh KE
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Nakon određivanja matrice B pomoću izraza koristeći matricu 
elastičnosti i vodeći računa o pravilu za integraciju određuje 
se matrica krutosti k

U diferencijalnom operatoru pojavljuju se parcijalni izvodi 
prvog reda pa se zaključuje da je stepen funkcije koja opisuje 
raspodelu deformacije u polju KE za jedan manji od stepena 
funkcije koja opisuje raspodelu pomeranja, tj. aproksimacija 
raspodele deformacije u polju KE je linearna pa se zbog toga 
element naziva tetraedar s linearnim deformacijama ili LSTh 
element (Linear Strain Tetrahedral element). Razmatrani 
element spada u grupu konformnih elemenata, a ispunjava i 
ostale uslove za monotonu konvergenciju rešenja

Analognim postupcima opisanim za CSTh element određuje 
se vektor ekvivalentnog opterećenja, raspodela deformacije i 
napona za LSTh element

KE oblika tetraedra. Kvadratna 

interpolacija. LSTh KE
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 KE oblika pravougaonog paralelopipeda koji ima 8 čvorova

 Raspodela pomeranja u polju
KE definisana je nepotpunim
polinomima trećeg stepena,
tzv. trilinearna interpolacija
pomeranja jer IF sadrže
proizvode tri linearna
polinoma

Prizmatični konačni elementi. 

Pravougaoni paralelopiped
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 IF (analogno kao i kod pravougaonog KE)

 Lagranžovi polinomi

 gde su n, m i r brojevi čvorova u pravcu osa x, y i z, respektivno i 1 ≤ k ≤ n, 
1 ≤ l ≤ m i 1 ≤ p ≤ r

 Vodeći računa o koordinatama početnih i krajnjih čvorova duž ivica 
KE (x1 = -a, x2 = a, y1 = -b, y2 = b, z1 = -c, z2 = c), Lagranžovi polinomi u 
pravcima osa x, y i z su (slično kao i kod dvodimenzionalnog 
pravougaonog KE) glase

Prizmatični konačni elementi. 

Pravougaoni paralelopiped
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 IF

Matrica krutosti

Prizmatični konačni elementi. 

Pravougaoni paralelopiped
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 IF. Prirodne koordinate

 gde su ξi = ± 1, ηi = ± 1 i ζi = ± 1 koordinate čvorova, a veze između 
prirodnih i lokalnih Dekartovih koordinata glase

 Sada matrica krutosti glasi

Prizmatični konačni elementi. 

Pravougaoni paralelopiped
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 Pri određivanju matrice B neophodno je odrediti parcijalne 
izvode IF po lokalnim Dekartovim koordinatama

 Lagranžov KE drugog reda
(27 čvorova i 81 stepen slobode)

Prizmatični konačni elementi. 

Pravougaoni paralelopiped
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 Lagranžov KE drugog reda

 Lagranžovi polinomi za čvorove u pravcu osa x, y i z

 odnosno vodeći računa o koordinatama čvorova x1 = -a, x2 = 0, 
x3 = a, y1 = -b, y2 = 0, y3 = b, z1 = -c, z2 = 0 i z3 = b sledi

Prizmatični konačni elementi. 

Pravougaoni paralelopiped
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Analognim postupkom kao i kod pravougaonog KE koristeći šemu 
i izraz 𝑁𝑖 𝑥, 𝑦, 𝑧 = 𝐿𝑘 𝑥 𝐿𝑙 𝑦 𝐿𝑝 𝑧 određuju se IF
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 S obzirom na to da Lagranžovi KE višeg reda imaju unutrašnje 
čvorove, kod njih se javlja veliki broj stepeni slobode

 Slično kao i kod dvodimenzionalnih KE, nepotpunost 
polinoma za aproksimaciju pomeranja u polju 
trodimenzionalnog Lagranžovog KE je nedostatak ali im je 
dobra osobina jednostavnost izvođenja IF

 Pored elemenata sa jednakim brojem čvorova u pravcu 
Dekartovih osa mogu da se izvedu elementi s raličitim brojem 
čvorova u pravcu koordinatnih osa množenjem Lagranžovih 
polinoma različitog stepena

Prizmatični konačni elementi. 

Pravougaoni paralelopiped
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 Primer

 Podaci su: qz = 10 MPa, modul elastičnosti E = 30 GPa, Poasonov 
koeficijent ν = 0,2, a = b = c = 0,5 m

Prizmatični konačni elementi. 

Pravougaoni paralelopiped
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Matematički model 3D tela oslonjenog u 
svim pravcima po površini jedne stranice 
(zatamnjena površina). Potrebno je 
odrediti pomeranje temena opterećene 
stranice
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Matematički model je diskretizovan 
jednim 3D KE koji ima 8 čvorova. Postoji 
simetrija ali nije korišćena pri analizi
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Prizmatični konačni elementi. 

Pravougaoni paralelopiped
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Prizmatični konačni elementi. 

Pravougaoni paralelopiped
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Prizmatični konačni elementi. 
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Komentari:

• Konvergencija ka tačnom rešenju 

može da se postigne povećanjem 

broja KE u modelu (progušćenje 

mreže) i/ili primenom KE višeg reda

• Pomeranje temena opterećene 

stranice u pravcu z ose, određeno 

primenom KE oblika pravougaonog 

paralelopipeda koji imaju 8, 20, 21 i 

27 čvorova i KE oblika tetraedra koji 

imaju 4, 10 i 11 čvorova u modelima 

sa uniformnom i adaptivnom 

mrežom, konvergira ka vrednosti 

približno jednakoj – 0,331 ∙ 10-3 m
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 Primena prirodnih koordinata pojednostavljuje određivanje matrice 
krutosti KE i vektora ekvivalentnog opterećenja

Prizmatični konačni elementi. 

Pravougaoni paralelopiped
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 Slično kao i kod dvodimenzionalnih KE, imaju čvorove samo 
duž ivica i na taj način smanjuje se broj stepeni slobode u 
odnosu na Lagranžove KE pri istoj raspodeli pomeranja

 Prednost u odnosu na Lagranžove KE je i u manjoj 
nepotpunosti polinoma ali imaju složeniji postupak izvođenja 
IF

U Serendipiti familiju spada i KE u obliku pravougaonog 
paralelopipeda, tzv. linearni element (8 čvorova i 24 stepena 
slobode)

Prizmatični konačni elementi. 

Serendipiti KE
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 Kvadratni (paraboličan) element (20 čvorova i 60 stepeni 
slobode)

 IF

 za čvorove u temenima

 gde su ξi = ± 1, ηi = ± 1 i ζi = ± 1 koordinate čvorova

 i za čvorove u sredinama ivica

Prizmatični konačni elementi. 

Serendipiti KE
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Heksaedarski KE koji ima 8 čvorova

Geometrija i raspodela
pomeranja proizvoljnog
heksaedarskog KE definišu
se na sledeći način

 gde su xi, yi i zi Dekartove koordinate i-tog čvora realnog elementa, a 
ui, vi i wi komponente pomeranja i-tog čvora realnog elementa u 
pravcu Dekartovih osa

 Funkcije preslikavanja i IF su

Izoparametarski konačni elementi.

KE oblika heksaedra
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y

z

x 3 (x3, y3, z3)

2 (x2, y2, z2)

5 (x5, y5, z5)

1 (x1, y1, z1)

4 (x4, y4, z4)

6 (x6, y6, z6)

7 (x7, y7, z7)

8 (x8, y8, z8)
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ξ 

ζ 

η 

ζ 

ξ 

2
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3

4
1

6 7

85

(1, 1, -1)

(-1, 1, -1)
(-1, -1, -1)

(1, -1, 1)

(-1, -1, 1) (-1, 1, 1)

(1, 1, 1)

Realni ili fizički elementReferentni (preslikani) 
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    
8 8 8
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u N u v N v w N w

             
  

    
8 8 8
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, , , , , , , ,i i i i i i
i i i

x N x y N y z N z

           
1

1 1 1 , 1,2,3,...,8
8

i i i iN i



 Parcijalni izvodi IF po Dekartovim koordinatama određuju se 
prema izrazu

Matrica krutosti

Izoparametarski konačni elementi.

KE oblika heksaedra
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  
      
      
 
      

  

  

 
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čvor čvor čvor
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čvor čvor čvor

N N N
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i i i
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N N N
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N N N
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N N Nx y z x y z

N N Nx y z
x y z

x y z N N N
x y z

J

 
 
   
   

   
     
 
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

   
 

   
 
    

22 33 23 32 13 32 12 33 12 23 13 22

1
23 31 21 33 11 33 13 31 13 21 11 23
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  detdxdydz d d dJ

  
  

   
1 1 1

1 1 1

detT d d dk B DB J
Zbog složenosti podintegralnih funkcija 

elementi matrice krutosti određuju se 

najčešće numeričkom integracijom 



Matrica B

 IF za heksaedarski KE koji ima 8 do 20 čvorova 

Izoparametarski konačni elementi.

KE oblika heksaedra
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   1 2 3 čvorNB B B B B

 
 
 

 
 
 

 
 

  
  
  
 

  
  
 
  
   
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     

   
     
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2 2 2
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g g g g g g g g g
N g N g N g

g g g g g g g g g
N g N g N g

g g g g g g
N g N g N g j

     

   

   

   

     

   

   

   



        

        

        

2

2

2

, , ,

1 1
1 1 , 0 1

2 2
1 1
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i
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ζ 
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Geometrija i raspodela pomeranja opisani su sledećim 
izrazima

 IF su jednake zapreminskim koordinatama

Izoparametarski konačni elementi.

KE oblika tetraedra sa 4 čvora
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y

z

x

3 (x3, y3, z3)

2 (x2, y2, z2)

4 (x4, y4, z4)

1 (x1, y1, z1)

η 

ζ 

ξ 

1 (0, 0, 0)

2 (1, 0, 0)

3 (0, 1, 0)

4 (0, 0, 1)

ξ 

η 

ζ 

Realni ili fizički 

element
Referentni (preslikani) 

element

             
  

    
4 4 4

1 1 1

, , , , , , , ,i i i i i i
i i i

x N x y N y z N z

             
  

    
4 4 4

1 1 1

, , , , , , , ,i i i i i i
i i i

u N u v N v w N w

   

 

      

   

1 1 2 2

3 3 4 4

1 ,

,

N L N L

N L N L



 ili KE drugog reda oblika tetraedra

Geometrija i raspodela pomeranja opisani su sledećim 
izrazima

 IF

Izoparametarski konačni elementi.

KE oblika tetraedra sa 10 čvorova
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Realni ili fizički 

element
Referentni (preslikani) 

element

y

z

x

3

2

4

1

η 

ζ 

ξ 

1

2

3

4

ξ 

η 

ζ 

5
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10 8

9

5 6

7

10
8

9

(0,0,1)

1(0,0,0)
2(1,0,0)
3(0,1,0)
4(0,0,1)
5(½,0,0)

6(½,½,0)
7(0,½,0)
8(½,0,½)
9(0,½,½)
10(0,0,½)

             
  

    
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1 1 1

, , , , , , , ,i i i i i i
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             
  

    
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1 1 1

, , , , , , , ,i i i i i i
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   

   

   

   

  

  

1 1 1 2 2 2

3 3 3 4 4 4

5 1 2 6 2 3 7 2 3

8 2 4 9 3 4 10 1 4

2 1 , 2 1

2 1 , 2 1

4 , 4 4 , 4 4

4 4 , 4 4 , 4 4

N L L N L L

N L L N L L

N L L N L L N L L

N L L N L L N L L

   

 

      

   

1 1 2 2

3 3 4 4

1 ,

,

N L N L

N L N L



 IF za KE od 4 do 10 čvorova

 Parcijalni izvodi

Izoparametarski konačni elementi.

KE oblika tetraedra
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2(1,0,0)
3(0,1,0)
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  
      
      
 
      

  

  

 
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čvor čvor čvor

čvor čvor čvor
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i i i
i i i
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J
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 
   
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     
 
  


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21 22 23
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
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Matrica B

Matrica krutosti 

Izoparametarski konačni elementi.

KE oblika tetraedra
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3
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ξ 

η 
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10 8
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7
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(0,0,1)

1(0,0,0)
2(1,0,0)
3(0,1,0)
4(0,0,1)
5(½,0,0)

6(½,½,0)
7(0,½,0)
8(½,0,½)
9(0,½,½)
10(0,0,½)
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detT d d dk B DB J
Zbog složenosti podintegralnih funkcija 

elementi matrice krutosti određuju se 

najčešće numeričkom integracijom


